Merry-go-round

The equation of motion in of a ball a stationary x,y plane is defined by:

Out[1]//TraditionalForm=

$$\begin{pmatrix} x(t) = t v_x - \frac{R}{2} \\ y(t) = t v_y \end{pmatrix}$$

n(2):= (* Naming the rotational coordinate system x', y' and is obtained by multiplying the stationary coordinate system by the rotation matrix $\lambda*$)

Out[3]//TraditionalForm=

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos(t \, \omega) & -\sin(t \, \omega) \\ \sin(t \, \omega) & \cos(t \, \omega) \end{pmatrix} \cdot \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

ln[4]:= (* substituting x,y by their equations and compute the matrix multiplication yields*)

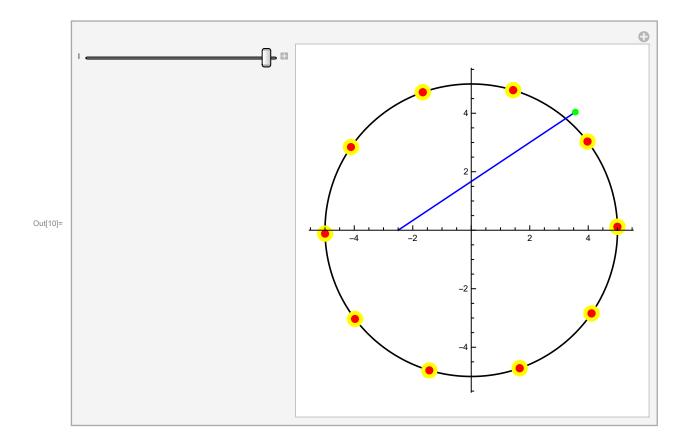
$$In[5]:= x[t_] := Vx * t - R / 2$$

Out[7]//TraditionalForm=

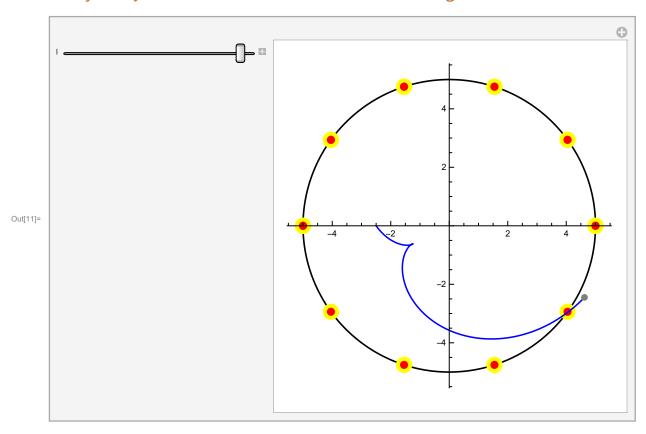
$$\begin{pmatrix} \left(t \operatorname{Vx} - \frac{R}{2}\right) \cos(t \omega) - t \operatorname{Vy} \sin(t \omega) \\ \left(t \operatorname{Vx} - \frac{R}{2}\right) \sin(t \omega) + t \operatorname{Vy} \cos(t \omega) \end{pmatrix}$$

The trajectory of this equation of motion in a stationary coordinate system is shown below:

```
(* Taking R=5, \omega=5, Vx=6, Vy=4*)
In[9]:= R = 5; \omega = 5; Vx = 6; Vy = 4;
```

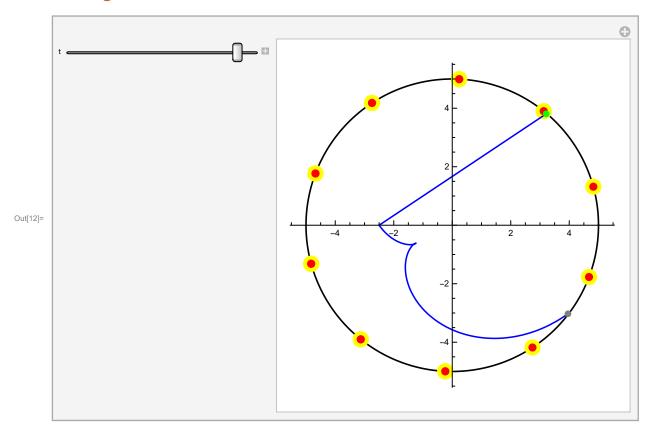


The trajectory of ball when we observe it in a rotating non-inertial frame:



It is important to show this observation, both of the trajectories will exit the

merry-go-round at the same time, which gives us an intuition that the ball have physically exited the merry-go-round no matter what frame you are observing it from:



Another interesting observation is when we set ω = 0, the trajectories will follow the same path - as expected:

