What is Symmetry in Chemistry? Name: Ibraheem Al-Yousef ## Part 1 H₂O & H₂O₂ 1. H₂O: *a)* Total Energy: -76.418 Hartree Point Group: C_{2v} List the symmetry elements: b) Identity E, Two Symmetry Planes σ, C₂ Axis of symmetry 2. 1.5 Å Stretched H₂O: Total Energy: -76.319 Hartree Point Group Cs List the symmetry elements: E, One Symmetry Plane σ 3. Planar H₂O₂: a) Total Energy: -151.550 Hartree Point Group: C_{2h} List the symmetry elements: E, One Symmetry Plane σ , C_2 Axis of symmetry, and one point of symmetry i 4. Optimized H₂O₂: Total Energy: -151.551 Hartree Point Group: C₂ List the symmetry elements: E, C_2 5. Why does the point group symmetry change when one of the O-H bond lengths in water is longer than the other and when hydrogen peroxide is not planar? Because the symmetry elements have changed hence the point group symmetry. In the water, we removed one symmetry plane and axis by stretching the bond. In H2O2, we removed one point of symmetry and one axis of symmetry. Which resulted in changing the point group symmetry. ## Part 2 Choose a molecule 1. C_s Molecule: Ammonia Total Energy: -56.554 Hartree Lewis Structure: 2. C∞v Molecule: Hydrogen fluoride Total Energy: -100.436 Hartree Lewis Structure: 3. D_{2h} Molecule: Oxalate ion Total Energy: -377.037 Hartree Lewis Structure: