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1 Boundary Conditions

Starting from TISE, we will impose two types of boundary conditions.
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We will first impose the continuity of the wave function, by:

Then, we will solve Schrodinger’s equations to see the other relation we can use as a boundary

condition:
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Introducing 8 = 777. Then simplifying the second boundary condition:
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2 Deriving The Matrix M,

Now we will write a matrix of this form:

Using our two boundary conditions (1) & (2)

Anezkx + Bne—zkac — An—&-lelkx + Bn+16—zkx

— A, L B+ A, ie¥* P — B = —2i3 (Ane%kx” + Bn)

The resultant matrix will be:

An—i—l =—1 (Anﬁ + lAn + BBne_%kxn)
Bpy1 = iAnBe*™ ™ +i3B, + B,

An+1 I- 26 _iﬁe_Qikwn An

Bn—H iﬁemkxn 1+ 26 Bn

Setting n = 0, 1, 2. The results will be:

A, A Ay Ay As

B, By B, B, B

Back subsitution yields:

Thus, The matrix M,, is going to be this:

AN+1 _ HMn

BN—H n=0 BO
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3 Computing T

Using the boundary conditions (1)&(2), and setting Byy1 = 0, we will obtain this:

Ani1 = —i (AoB + iAg + BBye 2*0) (3)

Byi1 = i4pBe* ™ +iBB, + By (4)
Aoﬁemka:o + (6 _ i)Bo =0

iBOe—Qilmo _ 5306_2ikx0

B

Ay —

Subsituting (5) in (3) then dividing by Ay yields the transmission coefficient T
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3.1 Bonus: Checking R + T =1

We will first compute R, then we will add it to T and we expect the results to be 1. This is done
by subsituting (5) in (4) then dividing by Ag, which will yield the following:

Ao 52 +1
Then,
1 2
T+R= T 1

321 52+1:
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4 Numerical Work

Now we will numerically compute the transmission coefficient T as a function of k while setting
other constants to 1. The detailed approach is present in the Mathematica file, after doing so. We

will get these nice plots:
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Figure 1. T vs k, we can see the allowed energy zones when T ~ 1, and band gaps when T = 0. a,

m, h and « are set equal to 1.
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4.1 T Versus N Delta Potential

Here, I was unable to generate this plot myself nor was I able to find the relation. I will cite

professor Griffith’s formula then I will plot it using Mathematica.

1

) =T po,ep

Where U, (z) is the second type of Chebyshev polynomials and z is (—1)"
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Figure 2. T vs N, The plot of T(n) where k is set to be 36



