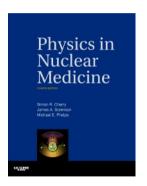


Summer Training Presentation

A Summary of the Projects Done with KFSH

Ibraheem F. Al-Yousef Department of Physics, KFUPM


Outline

- 1 What is Nuclear Medicine?
- 2 SPECT
- 3 Collimator Resolution
- 4 Extrinsic & Intrinsic Uniformity

Outline

- 1 What is Nuclear Medicine?
- 2 SPECT
- 3 Collimator Resolution
- 4 Extrinsic & Intrinsic Uniformity

What is Nuclear Medicine?

The science and clinical practice of nuclear medicine involve the administration of trace amounts of compounds labeled with radioactivity (radionuclides) that are used to provide diagnostic information in a wide range of disease states.

Physics in Nuclear Medicine, 2012

0

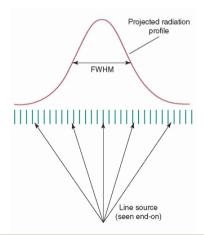
Outline

- What is Nuclear Medicine?
- 2 SPECT
- **Collimator Resolution**
- **Extrinsic & Intrinsic Uniformity**

SPECT

Single Photon Emission Computed Tomography

- Detects the gamma radiation emitted from the radionuclide substance that was injected inside the patient
- The images are functional images, showing the functions of the organs
- Usually integrated with CT, allowing for anatomical references
- Can take 2D, 3D, and multimodality images


I. Al-Yousef Summer Training Presentation KFUPM 5/23

Outline

- 1 What is Nuclear Medicine?
- 2 SPECT

- **3** Collimator Resolution
- 4 Extrinsic & Intrinsic Uniformity

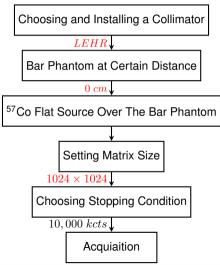
Collimator Resolution

Collimator Resolution R_{coll} is defined as the full width at half maximum of the radiation profile from a point or line source of radiation projected by the collimator onto the detector

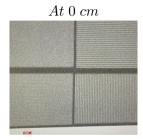
Experiment Setup & Goals

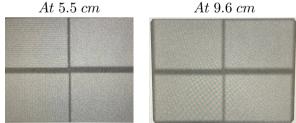
⁵⁷Co Flat Source

Bar Phantom

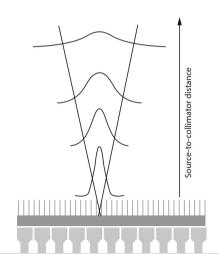


Three Collimators




SPECT

NM


Distance Vs. Resolution

Distance Vs. Resolution

Distance (cm)	Smallest Bar Resolved (mm)		
0	2.5		
5.5	3.0		
9.6	None		

Theoretical Estimation

Small Bar Resolved Estimations

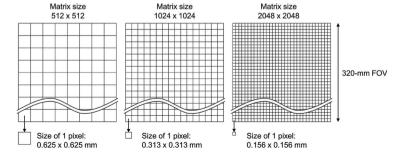
$$\ell_{eff} = \ell - 2\mu^{-1}$$
 $R_{coll} \approx d(\ell_{eff} + b)/\ell_{eff}$
 $R_{coll} \approx 1.75SBR$

Distance (cm)	Estimated Smallest Bar Resolved (mm)	Smallest Bar Resolved (mm)
0	1.1	2.5
5.5	2.5	3.0
9.6	3.7	None

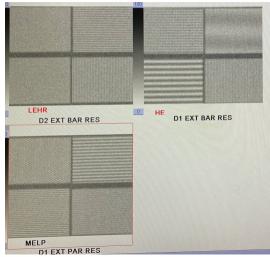
Where b is the collimator to source distance, d is the diameter, ℓ_{eff} is the "effective length" of the collimator holes, and μ is the linear attenuation coefficient.

Matrix Size Vs. Resolution

 1024×1024


$$512 \times 512$$

 128×128


Matrix Size Vs. Resolution

Matrix Size	Pixel Size (mm)	Smallest Bar Resolved (mm)
1024x1024	0.6	2.5
512x512	1.2	2.5
128x128	4.8	None

Thank you!

Collimator Vs. Resolution

Collimator Vs. Resolution

Collir	nator	Smallest Bar Resolved (mm)		
LEHR		2.5		
MELP		2.5		
HE		2.0		
Collimators	LEHR	MELP	HE	
Hole length (mm)	24.05	40.64	59.7	
Septal thickness (mm)	0.16	1.14 2		
Hole diameter across the flat source (mm)	1.11	2.94	4	

The collimator resolution gets better when increasing the septal thickness and the length of the holes, allowing less scatter rays to enter the crystal. Wider holes do the oppsite, they increase the sactter and thus poorer resolution.

NM SPECT Collimator Resolution Extrinsic & Intrinsic Uniformity References Questions? Thank you!

Outline

1 What is Nuclear Medicine?

2 SPECT

- **3 Collimator Resolution**
- 4 Extrinsic & Intrinsic Uniformity

Extrinsic & Intrinsic Uniformity

Extrinsic & Intrinsic Uniformity

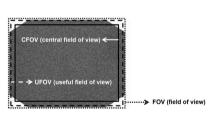
The gamma camera measures the intensity of emission form the source, and represents it as count per pixel. By using a uniform source, it is expected that the count per pixel should be the same across the image. Gamma camera *Uniformity Test* measures how uniform the images is when using a uniform source.

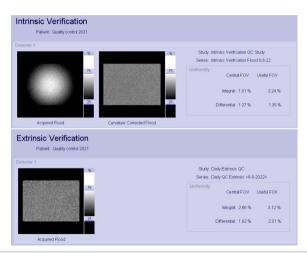
Test	Mcts	Int. CFOV	Int. UFOV	Diff. CFOV	Diff. UFOV
Extrinsic	10	≤5.00%	≤6.00%	≤3.50%	≤4.00%
Intrinsic	30	≤2.40%	≤2.80%	≤1.90%	≤2.20%

$$\label{eq:linear_loss} \begin{split} \text{Integral Uniformity} &= \frac{Max\ cts/pixel - Min\ cts/pixel}{Max\ cts/pixel + Min\ cts/pixel} \times 100\% \\ \text{Differential Uniformity} &= \frac{High - Low}{High + Low} \times 100\% \end{split}$$

Test Setup

⁵⁷Co Flat Source


Built-in ⁵⁷Co Point Source



Four Cups

Extrinsic & Intrinsic Uniformity

Test Results

Mcts	Int CFOV	Int UFOV	Diff CFOV	Diff UFOV	Pass/Fail
5	3.58%	4.03%	2.86%	2.86%	Pass
10	2.64%	2.95%	1.92%	2.34%	Pass
15	2.53%	3.04%	2.02%	2.02%	Pass
Mcts	Int CFOV	Int UFOV	Diff CFOV	Diff UFOV	Pass/Fail
10	3.71%	4.47%	1.94%	2.17%	Fail
15	2.43%	3.07%	1.65%	1.65%	Fail

The intrinsic uniformity is more sensitive to counts, hence it failed when lower count was used

I. Al-Yousef

References

- S. Cherry, J. Sorenson, and M. Phelps, Physics in Nuclear Medicine, 2012.
- N. Abualroos, Review on routine quality control procedures in nuclear medicine 97 instrumentation, 2020.
- NIST, XCOM, 2010. https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html

References

Routine Quality Control of Clinical Nuclear Medicine Instrumentation: A Brief Review, 2008.

https://jnm.snmjournals.org/content/49/7/1114

N. Hata et. al.

Effect of Matrix Size on the Image Quality of Ultra-high-resolution CT of the Lung: Comparison, 2018.

https:

//www.sciencedirect.com/science/article/pii/S1076633217305044

Questions?

Thank you!