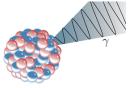
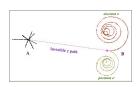


Monte Carlo Simulation of Radiation Transport

PHYS499 Seminar

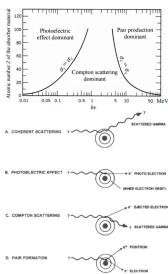

Ibraheem F. Al-Yousef Department of Physics, KFUPM


Outline

Introduction

- Introduction
- My Simulation
- 3 Results
- Conclusion

Radiation Transport of Gamma Rays



- High-energy photons emitted by radioactive nuclei
- γ -ray transport refers to the process by which γ -rays propagate through a medium and interact with the atoms and molecules in the medium.
- Radiation transport models are used in various fields, such as nuclear physics, astrophysics, and medical imaging.

Gamma Ray Interactions

- γ -rays interacts with matter via several mechanisms:
 - Photoelectric effect
 - Compton scattering
 - Pair production
- The probability of each type of interaction depends on the energy of the gamma ray and the composition of the material.

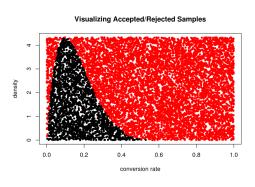
Monte Carlo Simulation

Definition

Monte Carlo is a computational technique that involves the usage of random numbers to simulate complex processes.

Main random ingredients:

- Distance to next interaction s
- Scattering angles $\theta \& \phi$

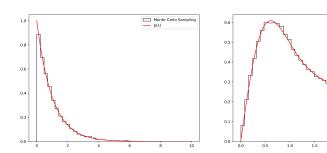

$$s follows: p(s)ds = \frac{1}{\lambda} 2e^{-s/\lambda} ds$$

$$\theta \ follows: \ p(\theta)d\theta = \frac{d\sigma_{KN}}{d\Omega} 2\pi \sin \theta d\theta$$

Acceptance / Rejection Method

We propose a distribution, U(x), to find the distribution p(x).

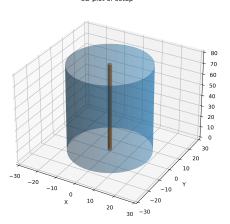
- Sample x_i, y_i according to U(x).
- 2 Check $y_i \leq p(x_i)$.
- If $y_i \le p(x_i)$ = True \implies Accept, otherwise reject and go to 1.



My Simulation

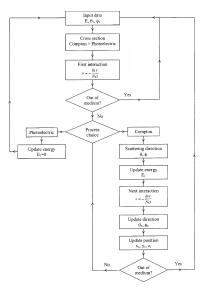
2.0 2.5

Monte Carlo Sampling


p(s) & $p(\theta)$

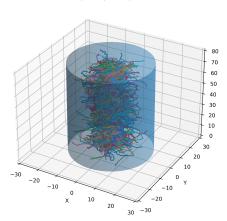
My Monte Carlo Accept / Reject method results

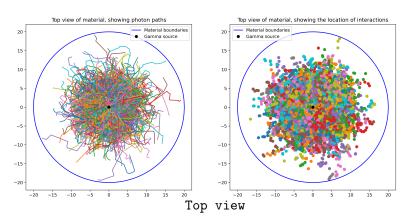
The Setup


3D plot of setup

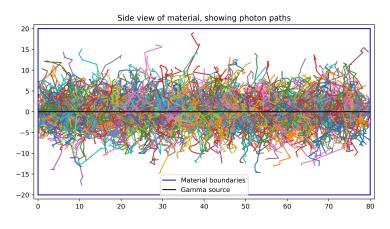
$$E = 1.00 \; MeV; \quad N = 2000$$

Flowchart

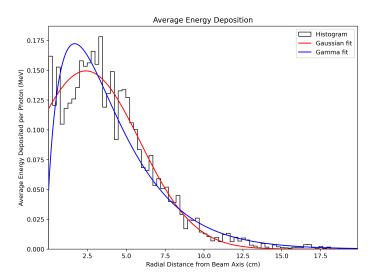

Introduction



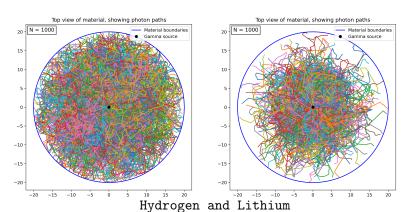
3D Visualization


3D plot of photon paths

Results



Results



Side view

Results

Qualitative Analysis

Qualitative Analysis

Conclusion

- Monte Carlo methods are a powerful and flexible tool for simulating gamma radiation transport.
- They allow for accurate modeling of complex geometries, materials, and sources.
- Monte Carlo simulations can be used to optimize radiation shielding designs and evaluate the performance of radiation detectors

Thank you! Questions?