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Abstract

We present here the Jordan-Wigner solutions to three prototypical spin 1/2 Hamiltonians. In particular, we consider
the 1D transverse Ising model, XY model, and Kitaev honeycomb model. After transforming the Hamiltonian to spinless
fermions via Jordan-Wigner transformation, we employ Fourier transform then Bogoliubov transformation to diagonalize
the Hamiltonian exactly. Moreover, the spectrum of elementary excitations as well as the ground-state energy are examined.
In addition, some correlation functions of the solved models are covered briefly. Lastly, the research problem of an extension

to the Kitaev model is introduced.
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1 INTRODUCTION

Condensed matter physics is an area of physics that studies the physical properties of materials and their collective phenom-
ena, such as magnetism, superconductivity. Of particular interest is the development of theoretical models and their solution.
Methods to solve these models often make use of different transformations such as the Jordan-Wigner transformation that
allows to study magnetic phenomena in fermionic language. The Jordan-Wigner transformation is a powerful tool for ex-
ploring quantum mechanical properties of many-body systems. In this research proposal, we will study three prototypical
quantum spin Hamiltonians: the Ising, XY, and Kitaev honeycomb model. Then we will propose a study of an extended

Kiteav honeycomb model.

2 BACKGROUND

2.1 Second Quantization

Second quantization is a formalism that was developed to describe and analyze quantum many-body systems. It enforces
identical particle’s statistics in the form of creation and annihilation operators. Any state can be generated by acting with

creation and annihilation operators on a many-body vacuum state |0).

Fermionic operators satisfy the following set of anti-commutation relations:
{cicly =055 {cl,cl} =05 {eici}=0 (1)
The actions of fermionic operators on the vacuum are given as:
ci|0)=0; (0]l =0 (2)
For bosonic operators:
lai,al] = dij; [al,al] =0;  [ai,a5] =0 3)

The actions of bosonic operators on the vacuum are given as:

a;|0)=0; (0]al =0 (4)

2.2 Spin Hamiltonians

Spin Hamiltonians are mathematical models that describe the behavior of interacting spin systems. These Hamiltonians

typically consist of sums of spin operators.

Spin operators are operators that satisfy the following commutation relations:
[Si, Sj] = theyjk Sk [oi,aj} = 2igij ok (5)
Where 7, j and k can be spin labels z, y and z. Moreover, they fulfill this anti-commutation relation:
{S", 89}y = héi; I; {o',07} =20;;1 (6)

Here o0;’s are spin 1/2 operators, and S;’s are general spin operators. For spin 1/2 they are related as follows:
h

Three examples of spin Hamiltonians are given below:
H=- Z (ST + ASES7 4] The Ising model (8)
H=> [(1+7)87S5 +(1—7)S!SY,];  The XY model (9)
H=-J, Z ofog —Jy Z ofal —J. Z oiog; Kitaev Honeycomb Model (10)
r—links y—links z—links

Where )\, 7, J; are model parameters, which are typically related to magnetic couplings.
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2.3 Jordan-Wigner Transformation

The Jordan-Wigner (JW) transformation is a unitary transformation used to map a system of interacting spins to a system
of non-interacting fermions. This transformation allows for the use of fermionic statistics, which in some cases make it easier
to solve a spin Hamiltonian, and can make it easier to compute correlation functions.

The definition of the Jordan-Wigner includes a string of ¢* operators on different sites. This string must be defined such
that it can thread all the sites up to the site of transformation. More generally, the objective is to define a convenient path
for this string of o* operators that makes the model easily solvable.

For the Ising and XY models, or any 1-D chain model, the JW transformation is defined as follows:
St=1I0=5;]c: S7=a]][l-5;] (11)
j<i J<i

SF = % (SF+57); SY= % (S; =S (12)

3

57 =2cle; — 1. (13)

i
Here, ¢! and ¢ are fermionic creation and annihilation operators.

For the Kitaev honeycomb model, which is two dimensional, the string of sigma ¢ operators is defined differently while

maintaining the same condition: threading the whole lattice. In this case it is given as
+ T - _
o =211 17 [H Uf’j] ciii oy =25 | [[ [] o [H Uf’j] (14)
§r<g i i'<i §<j @ ir<i

1
of = — (0';; +UZ;) ; o’ =

B=3 i) (1)

Uizj = 2C;—rjcij -1 (16)

2.4 Majorana Fermions

Majorana fermions are particles that are their own anti-particle, that can be described by a linear combination of creation

and annihilation fermionic operators.
Majorana operators satisfy the relations below:
(A Ajy =655 Al=4; A?=1 (17)

Introducing Majorana quasi-particles can sometimes be useful in computing correlation functions as it will be shown in
Sec. 3.1.3. In some cases it also makes it easier to identify conserved quantities such as is the case in honeycomb Kitaev-type

Hamiltonians. This observation leads to much easier computations of physical properties.

2.5 Fourier Transformation of Fermionic Operators

Fourier transformations, can be used to transform the Hamiltonian into momentum space. For translation invariant Hamilto-
nians this has proven to be useful. After transforming the Hamiltonian into momentum space, due to transnational symmetry,

one can find simplifications that lead to easier computations. The transformation is defined as follows:
= S et o= =3 e (18)
J /N . q /N .

Here, c:f] and ¢, are fermionic creation and annihilation operators in momentum space, and N is the total number of sites.

One important identity in dealing with Fourier transforms is the following:

Z 1) = Nogg (19)

J
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2.6 Bogoliubov Diagonalization

A Hamiltonian is considered solved if it has been diagonalized. Some families of many-body Hamiltonian are especially easily
diagonalizable. We consider here as an example the fermionic Bogoliubov type family of Hamiltonians in momentum space.

This type of Hamiltonian can be written in the following form:
h h c
H=% [cg c,q} ey (20)
q hai  hao C_g

Here, h;;’s are matrix blocks of the same size, then the Hamiltonian is diagonalized in the following way (by employing a

unitary transformation U):

H=3"[c| Ut unut v ‘ﬂ (21)
q§ —— D C—q
[71} nfq] [nq 77' ' qr

E
Where D = [ Oq . Then, the Hamiltonian in diagonalized form has the form:

—q

H=>"Eming+E_m_gn', (22)

q

Where we may interpret E, as particle energies and E_, as hole energies.

2.6.1 Specific 2x2 Hamiltonian

We now consider a simple 2 x 2 Hamiltonian of the form

oozt wdfs 2l

—

———
2X2

Where « and 3 are real valued, and are elements of the 2 x 2 matrix. Then eigenvalues are given as:

‘H—quza__w" R I Ny (24)
0 -0 — Wy
The unitary matrix U in (24) is:
. :
U= i Vol = |fh1 Z'Uq‘| s Ug = a+wq y o Vg = 6 (25)
= = 1. 5 q — ’ q
| | ot \ (O“"Wq)2 + B2 (a+wq)2 + B2

77}; _ | Uq 104 cg _ g | _
M—q Vg Ug| |C—q niq

Where Vi & V5, are the first and second eigenvectors of the matrix.

Uqg —wq} [ Cq
i g
—iVg  Ug cl,

3 SPIN HAMILTONIANS SOLVED IN THE LITERATURE

3.1 1-D Chains: Ising and XY Models

3.1.1 Ising Model

If we apply a Jordan-Wigner (JW) transformation to the Ising model defined in (8) it will lead to quartic fermion terms

when transforming S7.S7, ;. To avoid this issue we employ a canonical transformation:

S¥ — 8% 5% 5 57
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After doing so, the Hamiltonian now reads:

H = =3 [57 — ASTS7] @7

K2

Using (12) to rewrite spin operators as raising and lowering spin operators, we can rewrite the Hamiltonian as:
H=N-2) StS; =X [SfSf, + 887, + S5/, +87574] (28)
i i
Now, we employ the JW transformation in (11) to obtain a fermionic Hamiltonian:
H=N-2 Z cjc,» -2 Z [CICLFI + c;rci_H — cicj+1 — cici_H} (29)
i i

The next step now is to apply a Fourier transform in (18) and (19), and rearranging our terms such that we are only summing

over positive modes, we obtain the following Hamiltonian:

H=-2 Z(l +Acosq)(cheg — el jemg) + 20X Z sing(clel , — cqe_y) (30)
q>0 q>0
1+ Acos —i\sin c
=23l e | e 1 e ] H (31)
=0 tAsing —1—Acosq| |cl,

We can see that this Hamiltonian has the same form as (23), thus, we can diagonalize it using (24). The result is the following

diagonal Hamiltonian :

H =2 wglng + Eo (32)
q
Eoz—qu; wq:\/1+25\cosq+5\2 (33)
q
The ground state energy may be computed analytically by taking the continuum limit of the summations:
Ey T dq
EOZ—;wq—)N:_/_W%wq (34)
Ey T dg 1 [7 \/ - - 2 - ™ 4N
— =— —wy, = —— 142X Ndg=—=1+NE| =, ,|—— 35
N /_WQW% 7T/0 + 2\ cosq + \2dg 7r( +A) 5’ (1+5\)2 (35)
Here, E(%, k) is the complete elliptic integral of the second kind.
30 i
2k ,
L \_—/
s or ;
_1} ”’,—’ N \‘~\§§ u
2f L7 e ]
_3;__—" S~ o]
| | | | 1]
- I 0 I n
2 2
q+n
—— 21=05 A=1 —2a=2

Figure 1: Energy of elementary excitations for different X\. Dashed lines are hole energy.
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3.1.2 XY Model

The XY model Hamiltonian (9) does not need any canonical transformations before employing a Jordan-Wigner transfor-
mation. This is because when we rewrite it in fermionic language it is quadratic already. We start by using (12) to rewrite

spin operators as raising and lowering spin operators. We may then rewrite the Hamiltonian as:

H=2%[SFS7, + 878, +7(SF8f, +8757,)] (36)

Now, we employ the JW transformation in (11) to obtain a fermionic Hamiltonian that is given below:
H=2 Z (e ez — cicty + v (¢f ¢f g — cicigr)] (37)
i

The next step now is to apply a Fourier transform in (18) and (19), and rearranging terms in the Hamiltonian we are left

with a sum over positive modes as shown below:

H= 42 [cosq (c;;cq - c,qch) + 7yising (c_qcq — c;;ch)] (38)
q>0
cos —i7ysin c
= 42 [cg c_q] l .q 7 q} l Tq] (39)
>0 iysing —cosq | |c.,

We can also see that this Hamiltonian has the same form as (23), thus, we can diagonalize it using (24). The result is this

following Hamiltonian in its eigenspace:

H =4 wening + Eo (40)

q
EO:fQqu; wq:\/17(1772)sin2q (41)
a

Similar to (35), the ground state energy is:

E, ™ dg 1 ”/2\/ 5 2w
o Hy == 1—(1-2 dg =" (5, v1=7?) 42
N /ﬂ%wq o7 J, (1 =7?)sin"qdg = ——E (3 ¥ (42)

Where E(F, k) is the complete elliptic integral of the second kind.

1.0 -
0.5 *
>
0.0 - ]
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/ \ / \
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L / \ 4
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05+ / \ / * B
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/ \ / \
L , N , \ 4
r / N , N i
L // \\ // \\ 4
10 =22 - - m m e - - et e e e o = —— = e |
(] | 1 | | d
-n I 0 I n
2 2
q
—— =0 y=07 — y=1

Figure 2: Energy of elementary excitations for different v. Dashed lines are hole energy.
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3.1.3 Correlation Functions

Correlation functions in condensed matter theory are related to physical observables that can be measured experimentally.
Such as conductivity, magnetization, and spin-spin correlation functions. They can also be used to study the behavior of a
system under external perturbations, such as an applied electric field or a magnetic field. The correlation functions we are

interested in are defined as:
Cy =(01S7S710);  CF, =(0[SYS7|0); CF; = (0] S7S; |0) (43)

In order to calculate these correlation function we will use (12) as well as the JW transformation (11). The calculations are

demonstrated in detail below for C’fj:

Cz = (0] 5252 [0) = (0] (cj + ci) I -si (c} v cj) 10) (44)
i<k<j
However, we can simplify the string of [[,; _; [-Si] by introducing Majorana fermions:
Ai=cl+e; Bi=c —e; A2=1; B?=-1; {A,B;}=0 (45)
S; = QCLck —1= (cL + ck) (c;rf — ck) = Ay By, (46)
L O = (015757 10) = 0] A; [ [AxBi] A;10) = (0] [] [BrArsa]10) (47)
i<k<j i<k<j
Therefore, the correlation functions will yield:
Ch= 0 I BeArs110); C% =0 J] Brt14xl0); Cj = (0| BiA;B;A;|0); (48)
i<k<j i<k<j

Now we will employ Wick’s theorem to calculate the Vacuum Expectation Values (VEVs). For two operators A and E, their
contraction is defined as:

(AB) = AB — :AB: (49)
Where :O: is the normal order which is defined with creation operators left of annihilation operators. The first simplification
occur when considering Wick’s theorem for VEVs for fermions: all terms involving normal orders vanish, leaving only full

contractions:
(0|ABCDEF ...|0) = ngn(o) H contraction pair

all pairs
For our strings in C*, C¥, C* described in A and B operators, only (4;B,), and (B;A;) are nonzero. (A;A;) = d;; and
(BiBj) = —0;;. Since A’s and B’s anti-commute, then (B;A;) = — (A;B;). The correlation functions can be expressed as

the following determinants:

Gij = (Bidj); Gp = Gijyr = (BiAigr) = — (Ao Bi) = G, (50)
Gi G2 ... G, G.1 Gy ... Gr_g
Go Gi1 ... G._ Go G_; ... G._ Go G,
oz —| O 1 1 cv = 2 1 1 oz = |0 (51)
. G-, Gy
Goy Gy ... Gy G, Gi, ... G_
With transverse field: C? = C% — (m?*)*; m* = (B;A;) =Gy = C? = -G,G_, = —G? (52)

To evaluate these Green’s functions, we need to evaluate the VEVs in terms of the diagonalized operators. Therefore we will
apply Fourier transform (18), then Bogoliubov diagonalization by using the definition (26) for each model. After a short
computation we find that in the continuum limit:

T d
Gr:/ —qﬁcosqrfv—qsinqr (53)

_x 27wy Wq

For the transverse Ising model specifically, we may use the appropriate expressions for u,, v, and wy to find:

LT )\cos[q(r+1)]+cosqrd
"o2m ). /T4 A2+ 2Xcosq

(54)
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One can now evaluate the following values G, for some special values of relative Ising coupling strength A:

1 _
%(27”—}-)1 For A=1
G, = m =0,_1 For A=o0 (55)

1

WE&«’O For A\=0

For the XY model employing similar steps we find:

1T Cosqcosqrf’ysinqSiand F dd
G,=7 e e 4 ForTo (56)

0 For r even

One can now evaluate the following values G, for some special values of anisotropy parameter -y:

B —Lsnmr =5, Fory=1
GT - 2(_1)1/2(r+1) (57)
e For vy =0

T

3.2 Kitaev Honeycomb Model

The Kitaev honeycomb model is defined on a 2D honeycomb lattice by the Hamiltonian introduced in (10). The honeycomb
lattice is defined by two triangular Bravais lattices, and consequently, we have two sub-lattices which we will denote by white

(w) and black (b) as seen in Figure 3:

Figure 3: Kitaev’s honeycomb lattice, with sub-lattices denoted by (w) & (b)

First, we will deform the honeycomb lattice into a topologically equivalent brick-wall lattice:

X oV o X @Y o X ¢ D ®------ e @rene e ¢
i . 2 T —
-----(. ---------
Yy X Yy X Yy Fa\ 9 -=> o> © ;““"-{-;
Z , 2 T — ~
X Yy ~ X Yy X D m——— @ ------ E3P----@ ----.-.-T(;-':::::;:
Z 2 T — -
Vo x Y S Y s
e S s
Z z T i SL T
X Yy A X Y T e
; ; RSO et
26 i . z L —
o Yoo Y 5 3 SELEELECLEEEEE A oo

Figure 4: Honeycomb lattice after deformation, showing JW path
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Then, it becomes more clear how to define a convenient path for a JW transformation. Using the JW transformation defined
in (14) we will thread the brick-wall lattice in a zig-zag fashion, as illustrated in Figure 4. The result after employing the

JW transformation is the following Hamiltonian:

H=J, Z c—cf +c)b—Jy Z (CT-i-C) c—cT w = Z 200—1 (QCTc—l)w (58)

z—links y—links z—links

Where wé&b denotes the two sub-lattices. Now, we introduce Majorana fermions at each site, which are defined by:

_ ot _ ot
szi(c Z_C)w; Bw:(U—c) ; AbE(CT"‘C)b; Bbzi(c ic)b (59)
The Hamiltonian then takes the form below:
H=-il, Y AyAy+it, Y AA,+J. Y ByByAyA, (60)

z—links y—links z—links

We note that the term B, B, Ay A, is not quadratic, but luckily, there is a conserved quantity «,.. Replacing the conserved

quantity given below will allow us to separate the Hamiltonian into quadratic sectors:

oy = 1By By, (61)
H=—iJy Y AuAp+idy, > AAy—il. Y ordyAy (62)
r—links y—links z—links

Where r is the midpoint coordinate of the z-bonds.
Since By, is hermitian, and Bg o = 1 (17), then By, will have eigenvalues of £1. Moreover, By /., operators anti-commute

with Ay, operators, and consequently, a../i = By, By, Will commute with A;,,, operators.
{Bia AJ} =0 [BiBja Ak] =0; ijke {b,U)} (63)

It is now clear why we were able to identify .. as conserved quantities in our Hamiltonian. We will replace them by their
eigenvalue +1 which minimizes energy and therefore corresponds to the ground state configuration. Next, we introduce a

new spinon excitation fermionic operator which lives on the middle of z-bonds, defined as:

We can observe that
[, dy] = [a,d] =0 (65)
Finally, the Hamiltonian now reads:
H=0, 3" (d+dy) (dl o, +deve, ) + 0y Y0 (0 +dp) (e, +drse, ) + .3 (2dld, — 1) (66)

Where é,&¢, are the basis vectors shown in Figure 4. Now we apply a Fourier transform in 2-D, which is slightly different
than (18):

1 : 1 ‘
= —— > dle T dy == dge 9"
q 9 T q (67)
VN % VN 4

And (19) becomes:
YT = Noggy (68)

Using (67) and (68), and summing over positive modes, the Hamiltonian will read:

H =" [eq(didy — d_yd" ) +ing(dld", — d_dy)] (69)
q>0
A d
_ Z [dJ; d,q] fq 18yq Tq ] (70)
=0 Y d_,
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€q=2J, —2Jyco8q, —2Jyco8qy; Ay =2Jysing, +2Jysing,; ¢ =q-€; i€ {zr,y} (71)

Here, we have used the short-hand notation.

NS H VDTS (73)

dx qy q>0 q2>0 gy >0

Which now has a similar form to (23), thus, we can diagonalize it using (24). The result is this following Hamiltonian in its

eigenspace:

H =" wning + Eo (74)
q

1
E0:—§qu; wg = /€2 + A2 (75)
q

4 RESEARCH QUESTIONS

Kitaev’s honeycomb model only encompasses nearest neighbor interactions. However, what physical properties can one study
by including the next nearest neighbor (NNN) interactions? For example, an extended Kitaev honeycomb model can be

written as:
H=H,+H, (76)
= —iK> Z Z €l ( o5 Copy) (O'kO'l> = K, Z Z U}"UZUIB (77)
(aBy) (jkl)ap (aBy) (k) ap

Here, H; is the original Kitaev honeycomb model, Hj includes the NNN interactions, K is the NNN Kitaev coupling, €(as-)
is Levi-Civita symbol, and (af87) is a general permutation of (xyz). We define (jkl).s to be the path consisting of the two
bonds (jk), and (kl)g. Illustrated in Figure 5

Figure 5: Representative of the path (jkl),, associated with the K5 in (77)

e How does this impact thermal conductivity?

Can we find Kitaev spin liquid candidate materials?

e How does the magnetic field dependence on thermal conductivity change by including these interactions?

Will the model still be exactly solvable?

This research proposes a method to study a generalize Kitaev honeycomb model by extending it to encompass such interac-

tions, and check how this affect the physical properties of the model.
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5 METHODOLOGY
An extended Kitaev honeycomb model can be written as:
H=H, +H,+ H; (78)

Here, Hj includes the next next nearest neighbor interactions.
The way to approach such a Hamiltonian, is to first study it up to Hs, checking the solvability of the model. Then attempt

to include Hs.

The research scheme is to first write the Hamiltonian in fermionic language using (11). Then to introduce Majorana fermions
to check what conserved quantities are present in the system. Then, to use such quantities to attempt performing a Fourier

transform defined in (67). Finally, if the results have similar form to Bogoliubov Hamiltonians, we employ (26).
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