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Abstract

We present here the Jordan-Wigner solutions to three prototypical spin 1/2 Hamiltonians. In particular, we consider

the 1D transverse Ising model, XY model, and Kitaev honeycomb model. After transforming the Hamiltonian to spinless

fermions via Jordan-Wigner transformation, we employ Fourier transform then Bogoliubov transformation to diagonalize

the Hamiltonian exactly. Moreover, the spectrum of elementary excitations as well as the ground-state energy are examined.

In addition, some correlation functions of the solved models are covered briefly. Lastly, the research problem of an extension

to the Kitaev model is introduced.
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1 Introduction

Condensed matter physics is an area of physics that studies the physical properties of materials and their collective phenom-
ena, such as magnetism, superconductivity. Of particular interest is the development of theoretical models and their solution.
Methods to solve these models often make use of different transformations such as the Jordan-Wigner transformation that
allows to study magnetic phenomena in fermionic language. The Jordan-Wigner transformation is a powerful tool for ex-
ploring quantum mechanical properties of many-body systems. In this research proposal, we will study three prototypical
quantum spin Hamiltonians: the Ising, XY, and Kitaev honeycomb model. Then we will propose a study of an extended
Kiteav honeycomb model.

2 Background

2.1 Second Quantization

Second quantization is a formalism that was developed to describe and analyze quantum many-body systems. It enforces
identical particle’s statistics in the form of creation and annihilation operators. Any state can be generated by acting with
creation and annihilation operators on a many-body vacuum state |0⟩.

Fermionic operators satisfy the following set of anti-commutation relations:

{ci, c†j} = δij ; {c†i , c†j} = 0; {ci, cj} = 0 (1)

The actions of fermionic operators on the vacuum are given as:

ci |0⟩ = 0; ⟨0| c†i = 0 (2)

For bosonic operators:

[ai, a
†
j ] = δij ; [a†i , a

†
j ] = 0; [ai, aj ] = 0 (3)

The actions of bosonic operators on the vacuum are given as:

ai |0⟩ = 0; ⟨0| a†i = 0 (4)

2.2 Spin Hamiltonians

Spin Hamiltonians are mathematical models that describe the behavior of interacting spin systems. These Hamiltonians
typically consist of sums of spin operators.

Spin operators are operators that satisfy the following commutation relations:

[Si, Sj ] = iℏεijk Sk; [σi, σj ] = 2iεijk σ
k (5)

Where i, j and k can be spin labels x, y and z. Moreover, they fulfill this anti-commutation relation:

{Si, Sj} = ℏδij I; {σi, σj} = 2δij I (6)

Here σi’s are spin 1/2 operators, and Si’s are general spin operators. For spin 1/2 they are related as follows:

Si =
ℏ
2
σi (7)

Three examples of spin Hamiltonians are given below:

H = −
∑

i

[
Sx
i + λ̄Sz

i S
z
i+1

]
; The Ising model (8)

H =
∑

i

[
(1 + γ)Sx

i S
x
i+1 + (1− γ)Sy

i S
y
i+1

]
; The XY model (9)

H = −Jx
∑

x−links

σx
j σ

x
k − Jy

∑

y−links

σy
j σ

y
k − Jz

∑

z−links

σz
jσ

z
k; Kitaev Honeycomb Model (10)

Where λ̄, γ, Ji are model parameters, which are typically related to magnetic couplings.

https://github.com/ibralyousef/
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2.3 Jordan-Wigner Transformation

The Jordan-Wigner (JW) transformation is a unitary transformation used to map a system of interacting spins to a system
of non-interacting fermions. This transformation allows for the use of fermionic statistics, which in some cases make it easier
to solve a spin Hamiltonian, and can make it easier to compute correlation functions.
The definition of the Jordan-Wigner includes a string of σz operators on different sites. This string must be defined such
that it can thread all the sites up to the site of transformation. More generally, the objective is to define a convenient path
for this string of σz operators that makes the model easily solvable.
For the Ising and XY models, or any 1-D chain model, the JW transformation is defined as follows:

S+
i =

∏

j<i

[
−Sz

j

]
c†i ; S−

i = ci
∏

j<i

[
−Sz

j

]
(11)

Sx
i =

1

2

(
S+
i + S−

i

)
; Sy

i =
i

2

(
S−
i − S+

i

)
(12)

Sz
i = 2c†i ci − 1. (13)

Here, c† and c are fermionic creation and annihilation operators.

For the Kitaev honeycomb model, which is two dimensional, the string of sigma σz operators is defined differently while
maintaining the same condition: threading the whole lattice. In this case it is given as

σ+
ij = 2


∏

j′<j

∏

i′

σz
i′j′



[∏

i′<i

σz
i′j

]
c†ij ; σ−

ij = 2cij


∏

j′<j

∏

i′

σz
i′j′



[∏

i′<i

σz
i′j

]
(14)

σx
ij =

1

2

(
σ+
ij + σ−

ij

)
; σy

ij =
i

2

(
σ−
ij − σ+

ij

)
(15)

σz
ij = 2c†ijcij − 1 (16)

2.4 Majorana Fermions

Majorana fermions are particles that are their own anti-particle, that can be described by a linear combination of creation
and annihilation fermionic operators.

Majorana operators satisfy the relations below:

{Ai, Aj} = δij ; A† = A; A2 = 1 (17)

Introducing Majorana quasi-particles can sometimes be useful in computing correlation functions as it will be shown in
Sec. 3.1.3. In some cases it also makes it easier to identify conserved quantities such as is the case in honeycomb Kitaev-type
Hamiltonians. This observation leads to much easier computations of physical properties.

2.5 Fourier Transformation of Fermionic Operators

Fourier transformations, can be used to transform the Hamiltonian into momentum space. For translation invariant Hamilto-
nians this has proven to be useful. After transforming the Hamiltonian into momentum space, due to transnational symmetry,
one can find simplifications that lead to easier computations. The transformation is defined as follows:

c†j =
1√
N

∑

q

c†qe
iqj ; cj =

1√
N

∑

q

cqe
−iqj (18)

Here, c†q and cq are fermionic creation and annihilation operators in momentum space, and N is the total number of sites.
One important identity in dealing with Fourier transforms is the following:

∑

j

ei(q−q′)j = Nδqq′ (19)

https://github.com/ibralyousef/


PHYS497 Undergraduate Research Ibraheem Faisal Al-Yousef Research Proposal

2.6 Bogoliubov Diagonalization

A Hamiltonian is considered solved if it has been diagonalized. Some families of many-body Hamiltonian are especially easily
diagonalizable. We consider here as an example the fermionic Bogoliubov type family of Hamiltonians in momentum space.
This type of Hamiltonian can be written in the following form:

H =
∑

q

[
c†q c−q

] [h11 h12

h21 h22

][
cq

c†−q

]
(20)

Here, hij ’s are matrix blocks of the same size, then the Hamiltonian is diagonalized in the following way (by employing a
unitary transformation U):

H =
∑

q

[
c†q c−q

]
U†

︸ ︷︷ ︸[
η†q η−q

]
UhU†
︸ ︷︷ ︸

D

U

[
cq

c†−q

]

︸ ︷︷ ︸[
ηq η†−q

]T

(21)

Where D =

[
Eq 0

0 E−q

]
. Then, the Hamiltonian in diagonalized form has the form:

H =
∑

q

Eqη
†
qηq + E−qη−qη

†
−q (22)

Where we may interpret Eq as particle energies and E−q as hole energies.

2.6.1 Specific 2×2 Hamiltonian

We now consider a simple 2× 2 Hamiltonian of the form

H =
∑

q

[
c†q c−q

] [α −iβ
iβ −α

]

︸ ︷︷ ︸
2×2

[
cq

c†−q

]
(23)

Where α and β are real valued, and are elements of the 2× 2 matrix. Then eigenvalues are given as:

∣∣∣H − ωqI
∣∣∣ =

∣∣∣∣∣
α− ωq −iβ
iβ −α− ωq

∣∣∣∣∣ = 0 =⇒ ωq = ±
√
α2 + β2 (24)

The unitary matrix U in (24) is:

U =




| |
V1 V2

| |


 =

[
uq ivq

ivq uq

]
; uq =

α+ ωq√
(α+ ωq)

2
+ β2

; vq =
β√

(α+ ωq)
2
+ β2

(25)

[
η†q
η−q

]
=

[
uq ivq

ivq uq

][
c†q
c−q

]
;

[
ηq

η†−q

]
=

[
uq −ivq

−ivq uq

][
cq

c†−q

]
(26)

Where V1 & V2 are the first and second eigenvectors of the matrix.

3 Spin Hamiltonians Solved in the Literature

3.1 1-D Chains: Ising and XY Models

3.1.1 Ising Model

If we apply a Jordan-Wigner (JW) transformation to the Ising model defined in (8) it will lead to quartic fermion terms
when transforming Sz

i S
z
i+1. To avoid this issue we employ a canonical transformation:

Sx → Sz; Sz → −Sx

https://github.com/ibralyousef/
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After doing so, the Hamiltonian now reads:
H = −

∑

i

[
Sz
i − λ̄Sx

i S
x
i+1

]
(27)

Using (12) to rewrite spin operators as raising and lowering spin operators, we can rewrite the Hamiltonian as:

H = N − 2
∑

i

S+
i S

−
i − λ̄

∑

i

[
S+
i S

+
i+1 + S+

i S
−
i+1 + S+

i+1S
−
i + S−

i S
−
i+1

]
(28)

Now, we employ the JW transformation in (11) to obtain a fermionic Hamiltonian:

H = N − 2
∑

i

c†i ci − λ̄
∑

i

[
c†i c

†
i+1 + c†i ci+1 − cic

†
i+1 − cici+1

]
(29)

The next step now is to apply a Fourier transform in (18) and (19), and rearranging our terms such that we are only summing
over positive modes, we obtain the following Hamiltonian:

H = −2
∑

q>0

(1 + λ̄ cos q)(c†qcq − c†−qc−q) + 2iλ̄
∑

q>0

sin q(c†qc
†
−q − cqc−q) (30)

= −2
∑

q>0

[
c†q c−q

] [1 + λ̄ cos q −iλ̄ sin q
iλ̄ sin q −1− λ̄ cos q

][
cq

c†−q

]
(31)

We can see that this Hamiltonian has the same form as (23), thus, we can diagonalize it using (24). The result is the following
diagonal Hamiltonian :

H = 2
∑

q

ωqη
†
qηq + E0 (32)

E0 = −
∑

q

ωq; ωq =

√
1 + 2λ̄ cos q + λ̄2 (33)

The ground state energy may be computed analytically by taking the continuum limit of the summations:

E0 = −
∑

q

ωq → E0

N
= −

∫ π

−π

dq

2π
ωq (34)

E0

N
= −

∫ π

−π

dq

2π
ωq = − 1

π

∫ π

0

√
1 + 2λ̄ cos q + λ̄2dq = − 2

π
(1 + λ̄)E

(
π

2
,

√
4λ̄

(
1 + λ̄

)2

)
(35)

Here, E(π2 , k) is the complete elliptic integral of the second kind.

-π -
π

2
0 π

2
π

-3

-2

-1

0

1

2

3

q+ π

ω
q

λ = 0.5 λ = 1 λ = 2

Figure 1: Energy of elementary excitations for different λ̄. Dashed lines are hole energy.

https://github.com/ibralyousef/


PHYS497 Undergraduate Research Ibraheem Faisal Al-Yousef Research Proposal

3.1.2 XY Model

The XY model Hamiltonian (9) does not need any canonical transformations before employing a Jordan-Wigner transfor-
mation. This is because when we rewrite it in fermionic language it is quadratic already. We start by using (12) to rewrite
spin operators as raising and lowering spin operators. We may then rewrite the Hamiltonian as:

H = 2
∑

i

[
S+
i S

−
i+1 + S−

i S
+
i+1 + γ

(
S+
i S

+
i+1 + S−

i S
−
i+1

)]
(36)

Now, we employ the JW transformation in (11) to obtain a fermionic Hamiltonian that is given below:

H = 2
∑

i

[
c+i ci+1 − cic

+
i+1 + γ

(
c+i c

+
i+1 − cici+1

)]
(37)

The next step now is to apply a Fourier transform in (18) and (19), and rearranging terms in the Hamiltonian we are left
with a sum over positive modes as shown below:

H = 4
∑

q>0

[
cos q

(
c+q cq − c−qc

+
−q

)
+ γi sin q

(
c−qcq − c+q c

+
−q

)]
(38)

= 4
∑

q>0

[
c†q c−q

] [ cos q −iγ sin q
iγ sin q − cos q

][
cq

c†−q

]
(39)

We can also see that this Hamiltonian has the same form as (23), thus, we can diagonalize it using (24). The result is this
following Hamiltonian in its eigenspace:

H = 4
∑

q

ωqη
†
qηq + E0 (40)

E0 = −2
∑

q

ωq; ωq =

√
1− (1− γ2) sin2 q (41)

Similar to (35), the ground state energy is:

E0

N
= −2

∫ π

−π

dq

2π
ωq = − 1

2π

∫ π/2

0

√
1− (1− γ2) sin2 qdq = − 2

π
E
(π
2
,
√
1− γ2

)
(42)

Where E(π2 , k) is the complete elliptic integral of the second kind.

-π -
π

2
0 π

2
π

-1.0

-0.5

0.0

0.5

1.0

q

ω
q

γ = 0 γ = 0.7 γ = 1

Figure 2: Energy of elementary excitations for different γ. Dashed lines are hole energy.
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3.1.3 Correlation Functions

Correlation functions in condensed matter theory are related to physical observables that can be measured experimentally.
Such as conductivity, magnetization, and spin-spin correlation functions. They can also be used to study the behavior of a
system under external perturbations, such as an applied electric field or a magnetic field. The correlation functions we are
interested in are defined as:

Cx
ij = ⟨0|Sx

i S
x
j |0⟩ ; Cy

ij = ⟨0|Sy
i S

y
j |0⟩ ; Cz

ij = ⟨0|Sz
i S

z
j |0⟩ (43)

In order to calculate these correlation function we will use (12) as well as the JW transformation (11). The calculations are
demonstrated in detail below for Cx

ij :

Cx
ij = ⟨0|Sx

i S
x
j |0⟩ = ⟨0|

(
c†i + ci

) ∏

i≤k<j

[−Sz
k ]
(
c†j + cj

)
|0⟩ (44)

However, we can simplify the string of
∏

i≤k<j [−Sz
k ] by introducing Majorana fermions:

Ai ≡ c†i + ci; Bi ≡ c†i − ci; A2
i = 1; B2

i = −1; {Ai, Bj} = 0 (45)

Sz
k = 2c†kck − 1 =

(
c†k + ck

)(
c†k − ck

)
= AkBk (46)

∴ Cx
ij = ⟨0|Sx

i S
x
j |0⟩ = ⟨0|Ai

∏

i≤k<j

[AkBk]Aj |0⟩ = ⟨0|
∏

i≤k<j

[BkAk+1] |0⟩ (47)

Therefore, the correlation functions will yield:

Cx
ij = ⟨0|

∏

i≤k<j

BkAk+1 |0⟩ ; Cy
ij = ⟨0|

∏

i≤k<j

Bk+1Ak |0⟩ ; Cz
ij = ⟨0|BiAiBjAj |0⟩ ; (48)

Now we will employ Wick’s theorem to calculate the Vacuum Expectation Values (VEVs). For two operators Â and B̂, their
contraction is defined as:

⟨AB⟩ ≡ ÂB̂ − :ÂB̂: (49)

Where :Ô: is the normal order which is defined with creation operators left of annihilation operators. The first simplification
occur when considering Wick’s theorem for VEVs for fermions: all terms involving normal orders vanish, leaving only full
contractions:

⟨0|ABCDEF . . . |0⟩ =
∑

σ

sgn(σ)
∏

all pairs

contraction pair

For our strings in Cx, Cy, Cz described in A and B operators, only ⟨AiBj⟩, and ⟨BiAj⟩ are nonzero. ⟨AiAj⟩ = δij and
⟨BiBj⟩ = −δij . Since A′s and B′s anti-commute, then ⟨BiAj⟩ = −⟨AjBi⟩. The correlation functions can be expressed as
the following determinants:

Gij ≡ ⟨BiAj⟩ ; Gr ≡ Gii+r = ⟨BiAi+r⟩ = −⟨Ai+rBi⟩ = G−r (50)

Cx
r =

∣∣∣∣∣∣∣∣∣∣

G1 G2 . . . Gr

G0 G1 . . . Gr−1

. . . . . . . . . . . .

G2−r G2 . . . G1

∣∣∣∣∣∣∣∣∣∣

Cy
r =

∣∣∣∣∣∣∣∣∣∣

G−1 G0 . . . Gr−2

G−2 G−1 . . . Gr−1

. . . . . . . . . . . .

G−r G1−r . . . G−1

∣∣∣∣∣∣∣∣∣∣

Cz
r =

∣∣∣∣∣
G0 Gr

G−r G0

∣∣∣∣∣ (51)

With transverse field: Cz
r ≡ Cz

r − (mz)
2
; mz = ⟨BiAi⟩ = G0 =⇒ Cz

r = −GrG−r = −G2
r (52)

To evaluate these Green’s functions, we need to evaluate the VEVs in terms of the diagonalized operators. Therefore we will
apply Fourier transform (18), then Bogoliubov diagonalization by using the definition (26) for each model. After a short
computation we find that in the continuum limit:

Gr =

∫ π

−π

dq

2π

uq
ωq

cos qr − vq
ωq

sin qr (53)

For the transverse Ising model specifically, we may use the appropriate expressions for uq, vq and ωq to find:

Gr =
1

2π

∫ π

−π

λ cos [q(r + 1)] + cos qr√
1 + λ2 + 2λ cos q

dq (54)

https://github.com/ibralyousef/
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One can now evaluate the following values Gr for some special values of relative Ising coupling strength λ̄:

Gr =





2
π

(−1)r

2r+1 For λ̄ = 1

1
Γ(−r)Γ(r+2) ≡ δr,−1 For λ̄ = ∞

1
Γ(1−r)Γ(r+1) ≡ δr,0 For λ̄ = 0

(55)

For the XY model employing similar steps we find:

Gr =





1
2π

∫ π

−π
cos q cos qr−γ sin q sin qr√

1+(γ2−1) sin2(q)
dq For r odd

0 For r even
(56)

One can now evaluate the following values Gr for some special values of anisotropy parameter γ:

Gr =




− 1

π
sinπr
r+1 ≡ δr,−1 For γ = 1

2(−1)1/2(r+1)

πr For γ = 0
(57)

3.2 Kitaev Honeycomb Model

The Kitaev honeycomb model is defined on a 2D honeycomb lattice by the Hamiltonian introduced in (10). The honeycomb
lattice is defined by two triangular Bravais lattices, and consequently, we have two sub-lattices which we will denote by white
(w) and black (b) as seen in Figure 3:

relies on a quasidiagonal matrix formalism (see Appendix C), which is similar to, but more
elementary than, noncommutative geometry. It can also be applied to disordered systems.

Furthermore, we find that there are actually 16 (8 Abelian and 8 non-Abelian) types of
vortex-fermion statistics, which correspond to different values of ν mod 16. Only three of them
(for ν = 0,±1) are realized in the original spin model. We give a complete algebraic description
of all 16 cases, see tables on pages 30, 41, and 42.

1 The model

We study a spin-1/2 system in which spins are located at the vertices of a honeycomb lattice,
see Fig. 3a. This lattice consists of two equivalent simple sublattices, referred to as “even” and

y

y y y y y y

y y y y y

y y y y y y

y y y y y y

x

x

x

x

x x x x x

x x x x x

x x x x x

x x x x x

z z z z z z z

z

z z z z z z

z z z z z

z

yx z

a) b)

Figure 3: Three types of links in the honeycomb lattice.

“odd” (they are shown by empty and full circles in the figure). A unit cell of the lattice contains
one vertex of each kind. Links are divided into three types, depending on their direction (see
Fig. 3b); we call them “x-links”, “y-links”, and “z-links”. The Hamiltonian is as follows:

H = −Jx
∑

x-links

σxj σ
x
k − Jy

∑

y-links

σyjσ
y
k − Jz

∑

z-links

σzjσ
z
k, (4)

where Jx, Jy, Jz are model parameters.
Let us introduce a special notation for the individual terms in the Hamiltonian:

Kjk =





σxj σ
x
k , if (j, k) is an x-link;

σxj σ
y
k , if (j, k) is an y-link;

σxj σ
z
k, if (j, k) is an z-link.

(5)

Remarkably, all operators Kjk commute with the following operators Wp, which are associated
to lattice plaquettes (i.e., hexagons):

3
2

1
6

5

4
p

z

z

x

x y

y

Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 = K12K23K34K45K56K61. (6)

10

Figure 3: Kitaev’s honeycomb lattice, with sub-lattices denoted by (w) & (b)

First, we will deform the honeycomb lattice into a topologically equivalent brick-wall lattice:
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will mark all sites by “white” or “black” (w/b)in order
to denote to which sublattice which they belong to. The
distance between two nearest-neighboring sites on this
lattice will be set to unity.
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FIG. 1: Deformed hexagonal lattice and three types of bonds.

Throughout, we will consider the system with open
boundary conditions unless stated otherwise. The di-
agonal directions êx and êy shown in Fig.(1) will be of
paramount importance in our final solution. Let us de-
note by (i, j) the Cartesian coordinates of each site R on
the lattice of Fig. 1. Let us next consider the Jordan-
Wigner transformation defined by a simple one dimen-
sional contour which threads the entire lattice [See Fig.2]:

σ+
ij = 2


∏

j′<j

∏

i′
σz
i′j′



[∏

i′<i

σz
i′j

]
c†ij

σz
ij = 2c†ijcij − 1. (2)

This path goes through each lattice site exactly once as
shown in Fig.(2). In Eq.(2), σ+ = (σx+ iσy) is twice the
spin raising operator at a given site- hence the factor of
two.
The Kitaev model of Eq.(1) now becomes

H = Jx
∑

x−bonds

(
c† − c

)
w

(
c† + c

)
b

−Jy
∑

y−bonds

(
c† + c

)
b

(
c† − c

)
w

−Jz
∑

z−bonds

(
2c†c − 1

)
b

(
2c†c − 1

)
w
. (3)

Henceforth, the subscripts b and w will denote the white
and black sites of a bond as illustrated in Fig.1.
Let us next introduce the Majorana fermions

Aw = (c− c†)w/i Bw = (c+ c†)w (4)

for the white sites and

Bb = (c− c†)b/i Ab = (c+ c†)b (5)

FIG. 2: Schematics of the contour for the Jordan-Wigner
transformation that we employ in the deformed hexagonal
lattice- see text and Eq.(2) in particular.

for the black sites. With all of these transformations in
tow, the Hamiltonian now reads

H = −i


 ∑

x−bonds

JxAwAb −
∑

y−bonds

JyAbAw




−Jz
∑

z−bonds

Jz(BA)b(BA)w. (6)

It is easy to see that BB along the z-bond is a conserved
quantity [10]. Thus, the Z2 operator

αr = iBbBw, (7)

with r the coordinate of the midpoint of the bond con-
necting the black and red sites, is fixed for each vertical
bond. The Hamiltonian of Eq.(1) now reads

H({α}) = −i


 ∑

x−bonds

JxAwAb −
∑

y−bonds

JyAbAw




−iJz
∑

z−bonds

αrAbAw. (8)

Here, r denote the centers of the vertical bonds. In
Section(IV), We will show that {αr} are intimately re-
lated to the local symmetries present in Kitaev’s model
of Eq.(1). This identification, combined with Reflection
Positivity arguments, [5] will allow us to infer that, up to
(d = 1 [13]) symmetry operations, αr = 1 for all r. The
ground state does not contain any “vortices” which are
marked by one dimensional in the Ising variables {αr}
along a row. Similar Reflection Positivity arguments re-
garding the absence of vortices in other systems and a
bound on the energy penalties that they entail are. e.g.,
given in [14]. This, in turn, will allow us to explicitly
diagonalize the Hamiltonian.
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Throughout, we will consider the system with open
boundary conditions unless stated otherwise. The di-
agonal directions êx and êy shown in Fig.(1) will be of
paramount importance in our final solution. Let us de-
note by (i, j) the Cartesian coordinates of each site R on
the lattice of Fig. 1. Let us next consider the Jordan-
Wigner transformation defined by a simple one dimen-
sional contour which threads the entire lattice [See Fig.2]:
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This path goes through each lattice site exactly once as
shown in Fig.(2). In Eq.(2), σ+ = (σx+ iσy) is twice the
spin raising operator at a given site- hence the factor of
two.
The Kitaev model of Eq.(1) now becomes
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Henceforth, the subscripts b and w will denote the white
and black sites of a bond as illustrated in Fig.1.
Let us next introduce the Majorana fermions

Aw = (c− c†)w/i Bw = (c+ c†)w (4)

for the white sites and

Bb = (c− c†)b/i Ab = (c+ c†)b (5)

FIG. 2: Schematics of the contour for the Jordan-Wigner
transformation that we employ in the deformed hexagonal
lattice- see text and Eq.(2) in particular.

for the black sites. With all of these transformations in
tow, the Hamiltonian now reads

H = −i


 ∑

x−bonds

JxAwAb −
∑

y−bonds

JyAbAw




−Jz
∑

z−bonds

Jz(BA)b(BA)w. (6)

It is easy to see that BB along the z-bond is a conserved
quantity [10]. Thus, the Z2 operator

αr = iBbBw, (7)

with r the coordinate of the midpoint of the bond con-
necting the black and red sites, is fixed for each vertical
bond. The Hamiltonian of Eq.(1) now reads

H({α}) = −i


 ∑

x−bonds

JxAwAb −
∑

y−bonds

JyAbAw




−iJz
∑

z−bonds

αrAbAw. (8)

Here, r denote the centers of the vertical bonds. In
Section(IV), We will show that {αr} are intimately re-
lated to the local symmetries present in Kitaev’s model
of Eq.(1). This identification, combined with Reflection
Positivity arguments, [5] will allow us to infer that, up to
(d = 1 [13]) symmetry operations, αr = 1 for all r. The
ground state does not contain any “vortices” which are
marked by one dimensional in the Ising variables {αr}
along a row. Similar Reflection Positivity arguments re-
garding the absence of vortices in other systems and a
bound on the energy penalties that they entail are. e.g.,
given in [14]. This, in turn, will allow us to explicitly
diagonalize the Hamiltonian.

Figure 4: Honeycomb lattice after deformation, showing JW path
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Then, it becomes more clear how to define a convenient path for a JW transformation. Using the JW transformation defined
in (14) we will thread the brick-wall lattice in a zig-zag fashion, as illustrated in Figure 4. The result after employing the
JW transformation is the following Hamiltonian:

H = Jx
∑

x−links

(
c− c†

)
w

(
c† + c

)
b
− Jy

∑

y−links

(
c† + c

)
b

(
c− c†

)
w
− Jz

∑

z−links

(
2c†c− 1

)
b

(
2c†c− 1

)
w

(58)

Where w&b denotes the two sub-lattices. Now, we introduce Majorana fermions at each site, which are defined by:

Aw ≡
(
c− c†

)
w

i
; Bw ≡

(
c† + c

)
w
; Ab ≡

(
c† + c

)
b
; Bb ≡

(
c− c†

)
b

i
(59)

The Hamiltonian then takes the form below:

H = −iJx
∑

x−links

AwAb + iJy
∑

y−links

AbAw + Jz
∑

z−links

BbBwAbAw (60)

We note that the term BbBwAbAw is not quadratic, but luckily, there is a conserved quantity αr. Replacing the conserved
quantity given below will allow us to separate the Hamiltonian into quadratic sectors:

αr ≡ iBbBw (61)

∴ H = −iJx
∑

x−links

AwAb + iJy
∑

y−links

AbAw − iJz
∑

z−links

αrAbAw (62)

Where r is the midpoint coordinate of the z-bonds.
Since Bb/w is hermitian, and B2

b/w = 1 (17), then Bb/w will have eigenvalues of ±1. Moreover, Bb/w operators anti-commute
with Ab/w operators, and consequently, αr/i = Bb/wBb/w will commute with Ab/w operators.

{Bi, Aj} = 0; [BiBj , Ak] = 0; ijk ∈ {b, w} (63)

It is now clear why we were able to identify αr as conserved quantities in our Hamiltonian. We will replace them by their
eigenvalue +1 which minimizes energy and therefore corresponds to the ground state configuration. Next, we introduce a
new spinon excitation fermionic operator which lives on the middle of z-bonds, defined as:

d ≡ Aw + iAb

2
; d† ≡ Aw − iAb

2
(64)

We can observe that

[αr, dr] =
[
αr, d

†
r

]
= 0 (65)

Finally, the Hamiltonian now reads:

H = Jx
∑

r

(
d†r + dr

) (
d†r+êx

+ dr+êx

)
+ Jy

∑

r

(
d†r + dr

) (
d†r+êy

+ dr+êy

)
+ Jz

∑

r

(
2d†rdr − 1

)
(66)

Where êx&êy are the basis vectors shown in Figure 4. Now we apply a Fourier transform in 2-D, which is slightly different
than (18):

d†r =
1√
N

∑

q

d†qe
iq·r; dr =

1√
N

∑

q

dqe
−iq·r

(67)

And (19) becomes: ∑

r

ei(q−q′)·r = Nδqq′ (68)

Using (67) and (68), and summing over positive modes, the Hamiltonian will read:

H =
∑

q>0

[
ϵq(d

†
qdq − d−qd

†
−q) + i∆q(d

†
qd

†
−q − d−qdq)

]
(69)

=
∑

q>0

[
d†q d−q

] [ ϵq i∆q

−i∆q −ϵq

][
dq

d†−q

]
(70)
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ϵq = 2Jz − 2Jx cos qx − 2Jy cos qy; ∆q = 2Jx sin qx + 2Jy sin qy; qi ≡ q · êi; i ∈ {x, y} (71)

(72)

Here, we have used the short-hand notation.
∑

q

=⇒
∑

qx

∑

qy

;
∑

q>0

=⇒
∑

qx>0

∑

qy>0

(73)

Which now has a similar form to (23), thus, we can diagonalize it using (24). The result is this following Hamiltonian in its
eigenspace:

H =
∑

q

ωqη
†
qηq + E0 (74)

E0 = −1

2

∑

q

ωq; ωq =
√
ϵ2q +∆2

q (75)

4 Research Questions

Kitaev’s honeycomb model only encompasses nearest neighbor interactions. However, what physical properties can one study
by including the next nearest neighbor (NNN) interactions? For example, an extended Kitaev honeycomb model can be
written as:

H = H1 +H2 (76)

H2 = −iK2

∑

(αβγ)

∑

⟨jkl⟩αβ

ϵ(αβγ)
(
σα
j σ

α
k

) (
σβ
kσ

β
l

)
= K2

∑

(αβγ)

∑

⟨jkl⟩αβ

σα
j σ

γ
kσ

β
l (77)

Here, H1 is the original Kitaev honeycomb model, H2 includes the NNN interactions, K2 is the NNN Kitaev coupling, ϵ(αβγ)
is Levi-Civita symbol, and (αβγ) is a general permutation of (xyz). We define ⟨jkl⟩αβ to be the path consisting of the two
bonds ⟨jk⟩α and ⟨kl⟩β . Illustrated in Figure 5:

ZHANG, BATISTA, AND HALÁSZ PHYSICAL REVIEW RESEARCH 2, 023334 (2020)

The search for topological orders in such magnetic mate-
rials was fueled by the discovery of the Kitaev honeycomb
model [8], which realizes the C = 0 and C = ±1 topological
orders in an exactly solvable spin model on the honeycomb
lattice. Indeed, the bond-dependent Ising interactions of this
exactly solvable model were first proposed to emerge between
transition-metal ions in the d5 [12,13] and d7 [14,15] config-
urations as well as between rare-earth ions [16,17], and then
these proposals led to a wide range of honeycomb candidate
materials, including (Na,Li)2IrO3 [18–25], H3LiIr2O6 [26],
α-RuCl3 [27–35], Na3Co2SbO6 [36], and YbCl3 [37,38].
However, it should be emphasized that, while the original
Kitaev model only contains |C| � 1 topological orders, there
is no reason to believe that only these topological orders can
emerge in such honeycomb magnets.

In this work, we study an exactly solvable generalization
[39] of the Kitaev model that respects all symmetries of
the honeycomb lattice and realizes more than half of the
topological orders in Kitaev’s sixteenfold way, correspond-
ing to Majorana Chern numbers 0, ±1, ±2, ±3, ±4, and
±8. These topological orders contain both Abelian and non-
Abelian anyons with a rich variety of fusion and braiding
rules, and are experimentally distinguishable by their different
quantized values of the thermal Hall conductivity. For each
topological order, we use the exact solution of our model to
explicitly identify the anyon classes and verify their fusion
rules. In some cases, we find that lattice symmetry becomes
intertwined with anyon permutation symmetry, corresponding
to weak symmetry breaking [8], and gives rise to a “weak su-
persymmetry” in the excitation spectrum. Since the additional
four-spin interactions of our generalized Kitaev model arise
naturally from time-reversal-symmetric perturbations [39], in
the same way as the three-spin interactions in the original
Kitaev model arise from an external magnetic field, we believe
that the |C| > 1 topological orders described in this work
are likely to be realized in spin-orbit-coupled honeycomb
magnets, such as α-RuCl3.

II. LATTICE MODEL

We consider a generalization of the Kitaev spin model on
the honeycomb lattice,

H = H1 + H2 + H3, (1)

where the first term,

H1 = −K1

∑
α

∑
〈 jk〉α

σ α
j σα

k , (2)

is the pure Kitaev model [8] with Ising interactions between
the spin components σα along each α = {x, y, z} bond 〈 jk〉α
[see Fig. 1(a)], while the remaining two terms Hr with r =
2, 3 contain products of such Ising interactions along paths
consisting of r bonds each. If we define 〈 jkl〉αβ to be the path
consisting of the two bonds 〈 jk〉α and 〈kl〉β [see Fig. 1(b)],
then the second term reads

H2 = −iK2

∑
(αβγ )

∑
〈 jkl〉αβ

ε(αβγ )
(
σα

j σα
k

)(
σ

β

k σ
β

l

)

= K2

∑
(αβγ )

∑
〈 jkl〉αβ

σ α
j σ

γ

k σ
β

l , (3)

(c) (d)
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l
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p
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m

FIG. 1. Generalized Kitaev model. (a) Bond-dependent Ising
interactions of the K1 term corresponding to the pure Kitaev model:
the spin components σ x,y,z at neighboring honeycomb sites are
coupled along x (red), y (green), and z (blue) bonds, respectively.
The site-labeling convention around a plaquette p is also illustrated.
(b) Representative (orange) path 〈 jkl〉yx associated with the K2

term in Eq. (3). (c), (d) Representative (orange) paths 〈 jklm〉yzx

(c) and 〈 jklm〉yzy (d) associated with the K3 and K ′
3 terms in Eq. (4),

respectively. Spin interactions along these paths give rise to Majorana
hopping terms along the dashed arrows. Note that the K3 interactions
come in symmetry-related pairs (orange and blue) that correspond to
the same Majorana hopping term and may interfere constructively or
destructively. In general, sites in sublattice A (B) are marked by black
(white) dots.

where (αβγ ) is a general permutation of (xyz), and ε(αβγ )

is +1 (−1) for even (odd) permutations. Using analogous
notation, the third term then takes the form

H3 = −K3

∑
(αβγ )

∑
〈 jklm〉αβγ

(
σα

j σα
k

)(
σ

β

k σ
β

l

)(
σ

γ

l σγ
m

)

−K ′
3

∑
(αβγ )

∑
〈 jklm〉αβα

(
σα

j σα
k

)(
σ

β

k σ
β

l

)(
σα

l σα
m

)

= K3

∑
(αβγ )

∑
〈 jklm〉αβγ

σ α
j σ

γ

k σα
l σγ

m

−K ′
3

∑
(αβγ )

∑
〈 jklm〉αβα

σ α
j σ

γ

k σ
γ

l σα
m , (4)

where 〈 jklm〉αβγ and 〈 jklm〉αβα are paths consisting of
three bonds each [see Figs. 1(c) and 1(d)]. As it is clear
from our construction, the term Hr for general r contains
(r + 1)-spin interactions and thus breaks (preserves) time-
reversal symmetry for even (odd) r. We remark that the
term H2 was already introduced in Ref. [8] while the term
H3 was first considered in Ref. [39]. It is also important
to note that these two terms are respectively generated by

023334-2

Figure 5: Representative of the path ⟨jkl⟩yx associated with the K2 in (77)

• How does this impact thermal conductivity?

• Can we find Kitaev spin liquid candidate materials?

• How does the magnetic field dependence on thermal conductivity change by including these interactions?

• Will the model still be exactly solvable?

This research proposes a method to study a generalize Kitaev honeycomb model by extending it to encompass such interac-
tions, and check how this affect the physical properties of the model.

https://github.com/ibralyousef/
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5 Methodology

An extended Kitaev honeycomb model can be written as:

H = H1 +H2 +H3 (78)

Here, H3 includes the next next nearest neighbor interactions.
The way to approach such a Hamiltonian, is to first study it up to H2, checking the solvability of the model. Then attempt
to include H3.

The research scheme is to first write the Hamiltonian in fermionic language using (11). Then to introduce Majorana fermions
to check what conserved quantities are present in the system. Then, to use such quantities to attempt performing a Fourier
transform defined in (67). Finally, if the results have similar form to Bogoliubov Hamiltonians, we employ (26).
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