
PHYS410 Ibraheem Al-Yousef Numerical Homework 1

1 Problem Set Up

The main objective of this homework is to construct the transfer matrix M , and use it to solve two types

of quantum potentials.

1.1 The Main Approach

The first thing we want to do is to discretize our potential function, in the same fashion as approximating

the area of a function through a series of rectangles with a width ∆x.

Our potential has the following form:

V±(x) = ± ℏ2

2a2m

n(n+ 1)

cosh2(x/a)

For the purpose of this numerical approach, I set a = ℏ = m = n = 1.

-3 -2 -1 1 2 3
x

-1.0

-0.5

0.5

1.0

sech2(x)

V+(x)

V-(x)

Figure 1: V±(x)

Now, I will split V+(x) into rectangles with ∆x = 0.5:
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Figure 2: Discretized V+(x) with ∆x = 0.5, and points taken from the right
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Now that we Discretized V±(x), we can return to physics and start examining the new potential from

Schrodinger’s equation point of view.

1.2 Recognizing Regions

Now, we will have two types of regions to deal with: Constant Potential and Step Potential. Each one

of them will produce one type of transfer matrix, and the overall transfer matrix is just the multiplication

of these matrices.

V ≈ V0 + V1 + · · ·+ VN

1.2.1 Constant Potential

For a constant potential, the solution of Schrodinger’s equation is known, which is:

ψ(x) = Aeiknx +Be−iknx; kn =
√
2(E − Vn)

Now, we need to find the transfer matrix M0 that will transfer the wavefunction from the beginning of the

potential xi to the end of it xf , with dx = xf − xi:

ψi =

 Aeiknxi

Be−iknxi

 , ψf =

 Aeiknxf

Be−iknxf


We can see that each component of ψf is ±eikn(xf−xi) = ±eikndx. We can write a transfer matrix with this

shift as:

ψf =

eikndx 0

0 e−ikndx

ψi

Since dx is constant across all constant potentials, and the only changing factor is k:

∴Mc(kn) =

eikndx 0

0 e−ikndx



1.2.2 Step Potential

For the step potential, we will need to use the boundary condition of the wavefunction, namely the

continuity of the wavefunction, and the continuity of its derivative. Between two infinitesimal points

around the boundary x0− and x0+:

ψ(x0−) = ψ(x0+)

ψ+(x0−) + ψ−(x0−) = ψ+(x0+) + ψ−(x0+) (1)

and

ψ′(x0−) = ψ′(x0+)
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kn [ψ+(x0−)− ψ−(x0−)] = kn+1 [ψ+(x0+)− ψ−(x0+)] (2)

Combining (1) & (2) in matrices yield: 1 1

kn −kn

ψ+(x0−)

ψ−(x0−)

 =

 1 1

kn+1 −kn+1

ψ+(x0+)

ψ−(x0+)


ψ+(x0+)

ψ−(x0+)

 =
1

2

1 + kn
kn+1

1− kn
kn+1

1− kn
kn+1

1 + kn
kn+1

ψ+(x0−)

ψ−(x0−)


∴Ms(kn, kn + 1) =

1 + kn
kn+1

1− kn
kn+1

1− kn
kn+1

1 + kn
kn+1


1.3 Finalization

Now that we obtained an expression for Mc and Ms, we can now use them consecutively to transfer the

wavefunction from the leftmost position of the potential to the rightmost. From the incident wavefunction

ΨI to the transmitted one ΨT .

ΨT =Ms(kN−1, kN)Mc(kN−1) . . .Mc(k1)Ms(k0, k1)ΨI

ΨT = M(kn, kn+1)ΨI

M(kn, kn+1) =

(
N−1∏
n=0

(Ms(kn, kn+1)Mc(kn+1))
T

)T

The usage of transpose in
(∏N−1

n=0 x
T
n

)T
is to ensures that the product is taken in the inverse order, starting

from n=N-1 to n=0.
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Figure 3: Snippet of the series of transfer matrices that will take us from ΨI to ΨT
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2 Numerical Calculations

Using Mathematica, with this code:

V[x_, q_, n_] := q
n (n + 1)

2 Cosh[x]2

k[x_, q_, n_] := 2 (En - V[x, q, n])

Mc[x_, q_, n_, dx_] := EI k[x,q,n]*dx, 0, 0, E-I k[x,q,n]*dx

Ms[x_, q_, n_, dx_] := 0.5*1 +
k[x, q, n]

k[x + dx, q, n]
, 1 -

k[x, q, n]

k[x + dx, q, n]
, 1 -

k[x, q, n]

k[x + dx, q, n]
, 1 +

k[x, q, n]

k[x + dx, q, n]


listmultiplier[list_, partitionwidth_ : 5] :=

NestWhile[Dot @@@ Partition[# , partitionwidth, partitionwidth, 1, {}] &, list, Dimensions[#]〚1〛 > 1 &]〚1〛

BigM[q_, n_, dx_] := Reverse@Table[Ms[x, q, n, dx].Mc[x, q, n, dx], {x, -3, 3, dx}] // N;

Mlist1 = BigM[1, 1, 0.005]; Mlist2 = BigM[-1, 1, 0.005];

Plot1 (ComplexExpand@Abs@listmultiplier[Mlist1, 10]〚2〛〚2〛)2, 1 (ComplexExpand@Abs@listmultiplier[Mlist2, 10]〚2〛〚2〛)2,

{En, 0, 1}, PlotRange  All, PlotStyle  {Black, Red}, PlotLegends  {"T∈V+", "T∈V-"}, AxesLabel  {"E", "T"},

PlotLabel  "T(E), for n = 1"

Figure 4: Mathematica implementation of the transfer matrix approach

I obtained this result:
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Figure 5: Transmission coefficient as a function of energy, ∆x = 0.005, which means I have split the

potential into 1200 rectangle
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